Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4.

نویسندگان

  • K N Kreuzer
  • M Saunders
  • L J Weislo
  • H W Kreuzer
چکیده

We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tight linkage between DNA replication and double-strand break repair in bacteriophage T4.

Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replica...

متن کامل

Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication.

We investigated double-strand break (dsb) repair in bacteriophage T4 using a physical assay that involves a plasmid substrate with two inverted DNA segments. A dsb introduced into one repeat during a T4 infection induces efficient dsb repair using the second repeat as a template. This reaction is characterized by the following interesting features. First, the dsb induces a repair reaction that ...

متن کامل

Bacteriophage T4 UvsW protein is a helicase involved in recombination, repair and the regulation of DNA replication origins.

Bacteriophage T4 UvsW protein is involved in phage recombination, repair and the regulation of replication origins. Here, we provide evidence that UvsW functions as a helicase. First, expression of UvsW allows growth of an (otherwise inviable) Escherichia coli recG rnhA double mutant, consistent with UvsW being a functional analog of the RecG helicase. Second, UvsW contains helicase sequence mo...

متن کامل

Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination...

متن کامل

Double-strand break repair in tandem repeats during bacteriophage T4 infection.

Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 23  شماره 

صفحات  -

تاریخ انتشار 1995